Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Surgery ; (12): 166-171, 2017.
Article in Chinese | WPRIM | ID: wpr-808287

ABSTRACT

Objective@#To determine the feasibility and safety of anterior cervical decompression and fusion in severe cervical kyphosis treatment.@*Methods@#Totally 29 patients with severe cervical kyphosis(Cobb angle>50°) underwent anterior cervical decompression and fusion from June 2008 to May 2016 were studied retrospectively. There were 19 males and 10 females. The average age was 32.6 years ranging from 14 to 53 years. According to the etiology, 12 patients had iatrogenic deformity (11 had post-laminectomy cervical kyphosis, 1 had kyphosis due to anterior graft subsidence), 5 had neurofibromatosis, 4 had infective kyphosis, 8 had idiopathic cervical kyphosis. The curvature of cervical angle was measured by two-line Cobb method. The severity of cervical kyphosis was evaluated by kyphosis index (KI). Parameters including kyphosis levels, the apex of the kyphosis, C2-7 sagittal vertical axis(SVA) and T1 slope were also measured on lateral radiographs in the neutral position in each patient. The pre- and post-operative Japanese Orthopaedic Association(JOA) scores, visual analogue scale (VAS) of neek pain, neck disability index (NDI) and cervical alignment were compared. All patients were treated by skull traction. Motor evoked potential and somatosensory evoked potential were applied intraoperation as the spinal cord monitor.@*Results@#Skull traction was performed for an average of 6.3 days. The mean vertebral number in kyphotic region was 4.7. The average operation time was 155 minutes and blood loss was 135 ml. The preoperative C2-7Cobb angle was 46.6°±18.1° in average. It was reduced to 11.4°±6.4° in average after operation. The Cobb angle of operation region was 72.9°±19.6° in average before operation. It was reduced to 11.2°±6.4° in average after operation. The kyphosis region correction rate was 84.6%. The mean preoperative C2-7SVA changed from (3.8±14.6) mm to (12.6±7.8) mm postoperatively. The mean preoperative T1 slope changed from -10.6°±16.4° to 7.1°±14.9° postoperatively. The average postoperative C2-7 Cobb angle, Cobb angle of kyphosis region, KI, C2-7 SVA and T1 slope changed significantly compared with preoperation (F=12.700-218.200, all P<0.01). The average postoperative JOA, VAS and NDI scores improved significantly compared with preoperation (F=225.500, 217.900, 131.200, all P<0.01).@*Conclusion@#For severe cervical kyphosis, anterior correction is a safe and effective technique, sufficient decompression will be achieved.

2.
Chinese Journal of Surgery ; (12): 355-360, 2014.
Article in Chinese | WPRIM | ID: wpr-314698

ABSTRACT

<p><b>OBJECTIVE</b>To evaluate the role and value of Changhai fulcrum bending radiograph(CH-FBR) in curve flexibility assessment of adolescent idiopathic scoliosis(AIS) patients.</p><p><b>METHODS</b>Thirty-seven AIS patients treated between June 2012 and August 2013 were enrolled, including 31 female and 6 male patients whose age ranged from 10 to 19 years, averaged of 15.0 years. The assessment of radiographs included preoperative standing posterior-anterior radiograph, supine side-bending radiograph, traditional fulcrum bending radiograph, Changhai fulcrum bending radiograph and postoperative standing posterior-anterior radiograph. Postoperatively, radiographs were assessed at one week. The CH-FBR was performed at the lowest height and the optimized height which means the weight on the fulcrum touch the maximum. All measurements of angle were made with use of the Cobb method. The flexibility of the curve as well as the correction rate and fulcrum bending correction index (FBCI) were calculated for all patients. The maximum height of CH-FBR, basic weight and maximum weight were measured for all AIS. Paired t-tests were used to assess differences between preoperative and postoperative curves within group samples. The Pearson correlation coefficients were calculated using bivariate analysis between CH-FBR flexibility rate and correction rate, the maximum height of CH-FBR and maximum weight, the height changes of CH-FBR and weight changes.</p><p><b>RESULTS</b>A total of 46 curves were involved in this study, including 28 thoracic and 18 thoracolumbar/lumbar curves. Preoperatively, the mean Cobb angle of the 46 structural curves was 47° ± 11°. Postoperatively, the mean Cobb angle was 11° ± 5°. Cobb's angle in supine side-bending(t = 7.2, P = 0.001), traditional fulcrum bending (t = 7.1, P = 0.001) and lowest height of Changhai fulcrum bending (t = 6.5, P = 0.001) were significantly different from the postoperative Cobb angle; Cobb's angle in traditional FBR (t = 11.0, P = 0.001) and lowest height of Changhai fulcrum bending (t = 13.6, P = 0.001) were significantly different from the optimized height CH-FBR Cobb angle. There was no significant difference found between traditional FBR Cobb angle and lowest height CH-FBR Cobb angle (t = 2.0, P = 0.051), optimized height CH-FBR Cobb angle and postoperative Cobb angle (t = 0.9, P = 0.36), lowest height CH-FBR Cobb angle and traditional FBR Cobb angle(t = 2.0, P = 0.051). The maximum height of CH-FBR, basic weight and maximum weight were (29.6 ± 1.4)cm,(20 ± 6)kg, and (40 ± 6) kg. Preoperatively, the mean Cobb angle of the 28 structural curves(main thoracic curves) was 46° ± 11°. Postoperatively, the mean Cobb angle was 12° ± 6°. Preoperatively, the mean Cobb angle of the 18 structural curves(thoracolumbar/lumbar curves) was 49° ± 12°. Postoperatively, the mean Cobb angle was 10° ± 5°. The results were same in 28 structural curves, 18 structural curves as well as 46 curves. Correlation analysis of 46 curves indicated that the maximum height of CH-FBR positively correlated with maximum weight (r = 0.69, r(2) = 0.47, P = 0.001), the height changes of CH-FBR positively correlated with weight changes on CH-FBR (r = 0.62, r(2) = 0.38, P = 0.001).</p><p><b>CONCLUSIONS</b>CH-FBR is a more reliable and effective method than traditional FBR and supine side-bending for curve flexibility evaluation in AIS patients. Moreover, compared to the traditional FBR and side-bending radiograph, the flexibility suggested by the optimized height CH-FBR more closely approximates the postoperative result made by pedicle screws fixation and fusion.</p>


Subject(s)
Adolescent , Child , Female , Humans , Male , Young Adult , Prospective Studies , Radiography , Range of Motion, Articular , Scoliosis , Diagnostic Imaging , General Surgery
SELECTION OF CITATIONS
SEARCH DETAIL